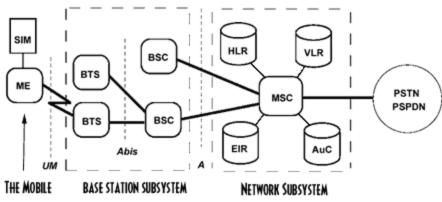
GSM System for Mobile

GSM History

- In the mid 1980's, most of Europe didn't have a cellular network.
 - They weren't committed to analog.
- After many years of research, GSM was proposed around 1990.
 - Covered Germany, France, England, and Scandinavia.
- Goals:
 - Roaming throughout all of Europe.
 - All digital to have ISDN type throughput (64 Kbps)
 - Never achieved.
 - Low power and inexpensive devices

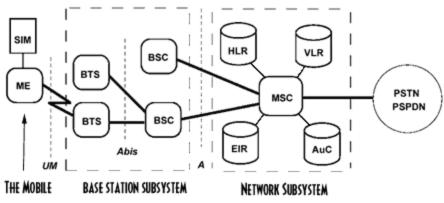
GSM History

- Main Goal:
 - Compression of voice to allow much better bandwidth usage.
 - GSM would use vocoders that used LPC linear predictive coding.
- GSM had an advantage in that it didn't have to support any legacy products.
- Security really wasn't the reason digital was chosen at the time.

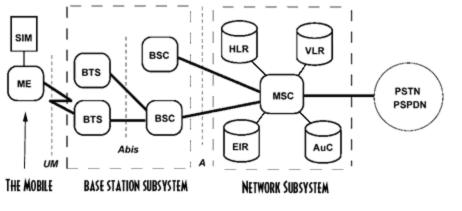

GSM History

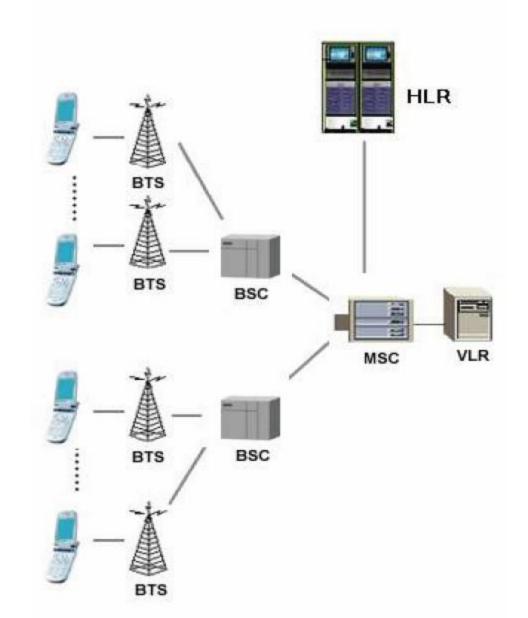
- All of Europe began using the GSM system.
 Japan also switched to GSM and helped develop very inexpensive SIM cards.
- GSM was an open source standard.
 - Products could be made by many vendors.
- 8000 page standard was published in 1993.

GSM Services


- GSM was designed to do 3 things:
 - 1. Bearer data services: Faxes, text messages, web pages.
 - Basic GSM had a basic data rate that is limited to 9.6 kbps
 - Extended by GMRS and EDGE to around 384 Kbps
 - 2. Voice traffic
 - But, at a lower quality than analog.
 - 3. Other features:
 - Call forwarding, caller id, etc...
 - Meaning, we need to connect to the SS7 network

- Very similar to the analog architecture.
- 3 parts:
 - Mobile Phone
 - Digitizes and sends your voice.
 - Cell phone tower / Base Station
 - Controls the radio link.
 - Network switching system
 - The brains in the system.


- SIM Subscriber Identity Module.
 - Allows you to switch phones.
 - Stores your phonebook and ringtones.
- ME Mobile Equipment.
 - Your cellphone
- UM User Mobile Frequency
 - The actual radio frequency you are using.



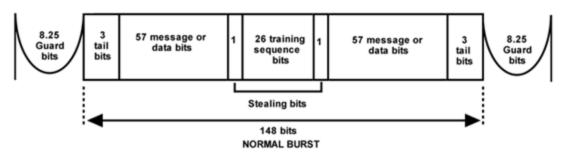
- BTS Base Transceiver Stations.
 - The radio antennas.
 - In GSM, 1 sends and 1 receives.
 - Only 2 are necessary.
- BSC Base Station Controller.
 - Packages up all the radio signals and sends them to the switch.
 - Handles handoffs and some other low-level functionality.
 - Manages up to 50 or so radio antennas
 - Provides better network segmentation.
- Abis Typically a T1 SS7 connection using ISUP

- MSC Mobile Switching Center
 - Has several databases that perform call validation, call routing to the PSTN, and roaming validation.
 - Some of the databases:
 - HLR: Home Location Register
 - Main customer database
 - Motorola only has 60 HLRs in the United States.
 - VLR: Visitor Location Register
 - Works in tandem with the HLR. Roamer database.
 - EIR: Equipment Identity Register
 - Deny stolen mobile phones service. Has all valid serials.
 - AuC: Authentication Center
 - Stores encryption keys necessary for secure communications.

Radio Frequencies

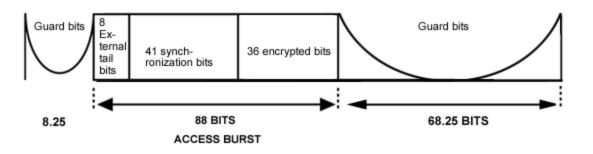
- Operates in the 1850 MHz band and from:
 - 1850 to 1910 MHz Mobile to Base
 - 1930 1990 MHz Base to Mobile
 - There are 300 forward/reverse channels in this band.
- Each channel is 200 KHz
- GSM uses TDMA to fit 8 conversations on a channel.
- So, technically, GSM is TDMA and FDMA based.

GSM Burst Periods


- Since GSM is TDMA based, it uses burst periods to make up a frame.
 - 8 burst periods make up one frame.
 - A burst is like a slot in the train.
 - A burst period is where a phone gets to send digital information.
 - Phones send around 14 bits of information in every burst.
 - However, a burst period only lasts .577 ms.
 - Phones are only bursting information at around 1700 times a second, much less than the 8000 times a second a landline phone samples at.

GSM Frames

- 8 burst periods make 1 frame.
- The frame length in time is 4.615 ms
 - .577 ms times 8
- Each frame carries 164 bits
 - 114 are for voice
 - The rest are for synchronization and CRC checks
- Each frame can carry up to 8 voice samples, or, the frame can be dedicated to other necessary information.


GSM Frames

- Different frames mean different things.
 - For instance, this data structure contains information about the cell site.
 - The cell phone scans for this information when it is turned on.

GSM Frames

 This is the burst that occurs when the mobile transmits its access key back to the base station.

Speech Coding

- GSM uses LPC Linear Predictive Coding.
 - Uses interpolation.
 - Basically, previous samples, which don't change very quickly, are used to predict current samples.
- So, instead of actually sending the voice sample, the delta in the voice sample is sent.
- Also, silence is not transmitted.
 - This increases throughput by about 40%.
 - This bits can be used for other conversations.

Digital Modulation

- Uses Gaussian minimum shift keying.
- Very complex, uses filters, phase shifts, and frequency shifts to actually send out binary digits.

Power Requirements

- Since GSM is purely digital, it requires a lot less power since it doesn't have to transmit an analog wave.
- The maximum output power of a GSM phone is only 2 watts.
 - And this can be notched down by the controlling cell phone tower.
 - The minimum power is only 20 mW.

GSM Call Processing

- Unlike AMPS, the cell tower can transmit on any of its frequencies.
- The cell phone is actually pre-programmed in the SIM card to have a set of radio frequencies that it should check first.
 - When this fails, it needs to search through all frequencies.
- When it detects the tower identifying itself, call processing begins.

SIM Card Secrets

- The SIM card has a secret serial number that is only known by your cellular provider and the SIM card.
 - You, as the customer, do not know the number.
- This secret number acts as a key, and it is 32 bits in length.

Authentication and Security

- GSM uses a challenge/response public key setup.
- The base station sends a random number to the mobile.
 - This acts as the base station's public key.
- The mobile then uses an algorithm called A3 to encrypt it's secret key using the random public key that it was sent by the base station.
 - A5 is a derivative of DES.
 - Several rounds of shifts and XORs.

Authentication and Security

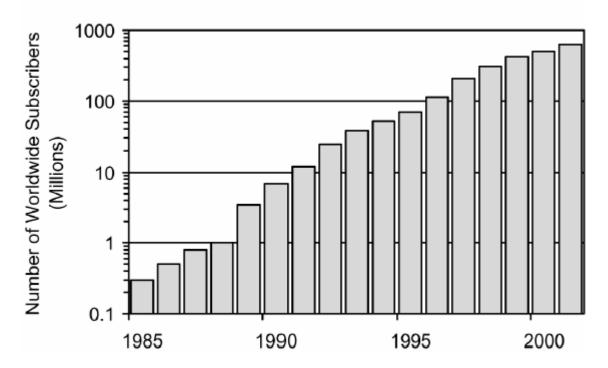
- This encrypted information is then sent back to the base station.
- The base station performs a reverse operation, and checks to see that the mobile sent the correct secret code.

- If not, it is denied access.

- A3 has proved to be very difficult to break.
 - Though, given a significant amount of time, it can be broken.

Authentication and Security

- GSM also uses another database for security.
- This database maintains a list of stolen cell phones, and cell phones that have technical errors.
 - These are also not allowed access to the digital network.


GSM conclusion

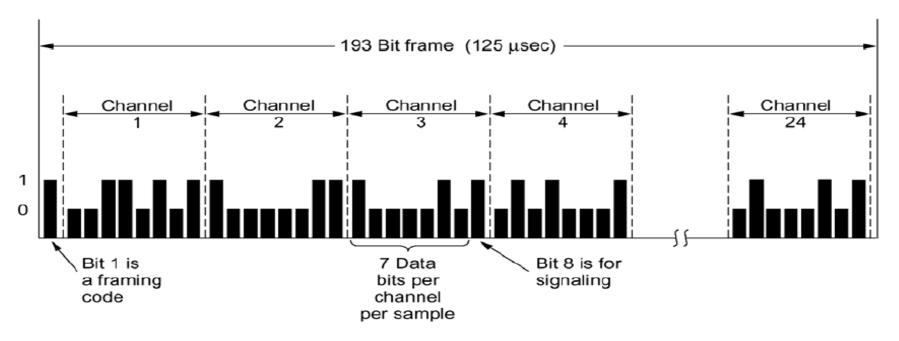
- Widely used.
 - Upwards of 70% of phones.
- Uses SIM cards so customers can use any phone and for security.
- Allows more customers than analog.
- Worse voice quality than analog.
- Purely digital.
- Open source, very complex standard.
- Uses TDMA.
- Will be replaced by CDMA in the near future.

CDMA Digital Cellular Standard (IS95) Introduction

- Cellular subscription rates
 - Beyond expectations note that the below y-axis is on a log scale.

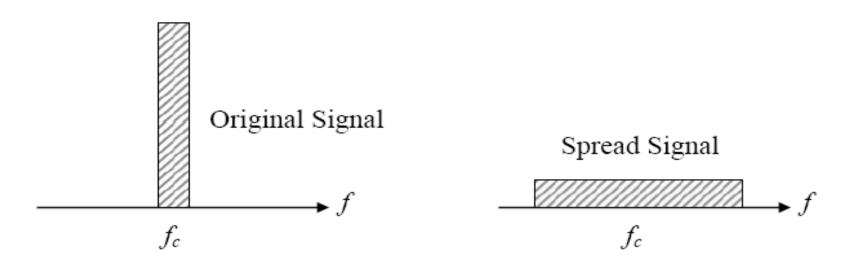
Growth of Cellular Telephone Subscribers Throughout the World

- Many countries see 40% increase per year.
- Projected to reach 2 billion subscribers worldwide by 2006 (30% of world's population).
- Wireless communication is robust.
 - Viable voice transport mechanism
 - Viable data transport mechanism
 - High speed data communications in addition to voice calls.
 - Fixed wireless
 - To replace fiber optic or copper lines between two points.
 - Inside buildings and homes
 - Wireless local area networks (WLANs) to connect between computers.
 - Bluetooth to connect between devices and peripherals.


- Possible competition area: Inside buildings
 1. WLANs and Bluetooth
 2. Collular Corriger
 - 2. Cellular Carriers

 What ideas do you have of using the benefits of both approaches? Then there would not need to be a choice of one or the other.

II. Second Generation (2G) Cellular Networks


- First Generation
 - Analog
 - Frequency Division Multiple Access (FDMA)
 - Multiple users are provided access to a system by dividing the spectrum up into frequency bands.
 - Different users use different frequency bands.
 - AMPS standard.
 - 30 kHz voice channels

- Second Generation
 - Digital modulation
 - TDMA/FDD or CDMA/FDD
 - Time Division Multiple Access (TDMA) 3 popular standards use this.
 - Signal is digitized.
 - Users occupy different time slots.
 - Example from wired telephone: Each user needs to send an 8-bit block of digitized voice every 125 microseconds (8000 times per second).
 - ➢ Requirement is for 64 kbps.
 - One type of channel can support a data rate of 1.544 Mbps (a "T1" telephone circuit).

- So 24*64kbps = 1.536 Mbps, which means 24 users can be supported (with a little bit of bandwidth used for the framing bit).
- As seen in figure above, each user takes a turn each 125 microseconds to send a burst of 8 bits.

- Code Division Multiple Access (CDMA) one main standard uses this.
 - Instead of using a different time slot or frequency to differentiate users, CDMA uses a different code.
 - These codes are used for *Spread Spectrum Modulation*.
 - The Tx multiplies the signal with a special code and then the signal is transmitted. This expands (spreads) signal BW many times. Then the signal is multiplied at the Rx with the same code.
 - This then collapses (despreads) the signal back to its original signal BW.
 - Other signals created with other codes just appear at the Rx as random noise.

- Advantages
 - Resistant to narrowband interference can only reasonably try to affect part of the signal.
 - Allows multiple users with different codes to share same range of frequencies.
 - The system can operate effectively at lower Signal-to-Noise ratios, so more users can be supported than for a non-CDMA system.

- Signal spreading done by using a pseudo-noise (PN) code or sequence
 - Pseudo-noise means it looks like noise to all except those who know how to recreate the sequence.
 - Others cannot decode the signal
 - They cannot even recognize the signal because it just looks like noise

• Two types of SSM

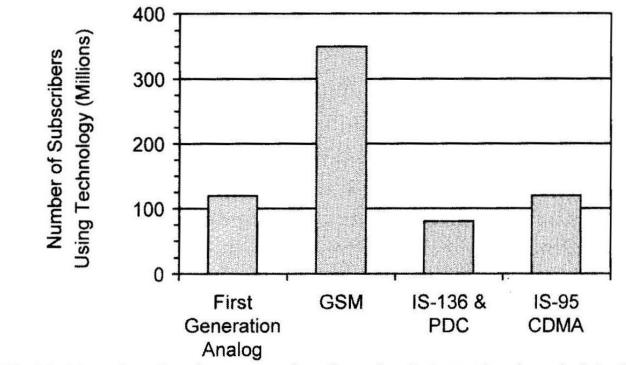
1) Direct Sequence (DS)

- Multiply baseband data by a high rate signal created with the PN code.
- New signal has much higher rate.
- This spreads the baseband spectrum over a wide range of frequencies.

2) Frequency Hopping (FH)

- Randomly change channel frequency with time, following the PN code.
- Spread the frequency values that are used over a wide range.
- In effect, this signal stays narrowband but moves around a lot to use a wide band of frequencies over time.

- TDMA/FDD versus CDMA/FDD
 - Use TDMA or CDMA to separate users
 - Use different frequencies for forward and reverse voice channels (FDD).


- 4 popular standards for 2G 1.Global System for Mobile (GSM)
 - Eight time-slotted users for each 200 kHz radio channel.
 - Deployed widely in Europe, Asia, Australia, South America, and some parts of the U.S. in the PCS band of spectrum.
 - GSM uses SIM (Subscriber Identity Module) cards that can be transferred from phone-to-phone.
 Phones for other types of technologies must be programmed.
 - T-Mobile, AT&T, and Cingular in the U.S.

- 2. Interim Standard 136 (IS-136)
 - Also called North American Digital Cellular (NADC)
 - Three time-slotted users per 30 kHz channel
 - Popular in North America, South America, and Australia.
 - Cingular and AT&T in the U.S. Both companies have larger areas for their TDMA networks

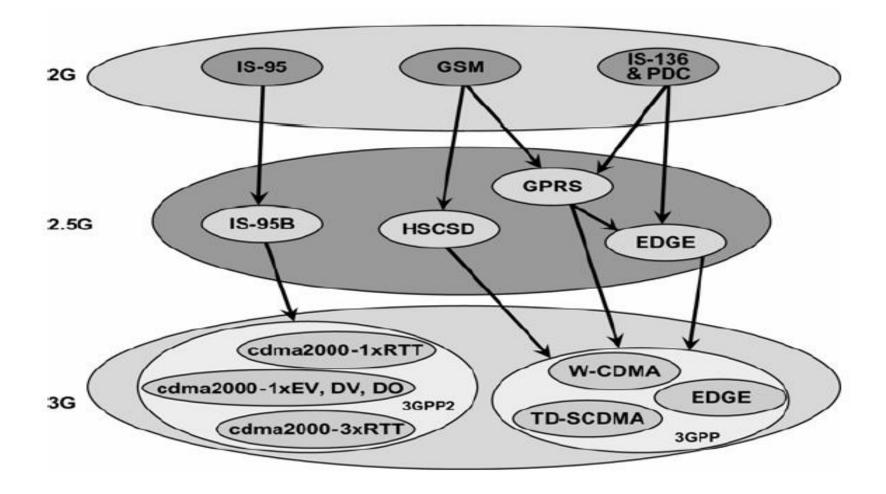
- 3. Pacific Digital Cellular (PDC)
 - Japanese standard
 - Similar to IS-136
- 4. Interim Standard 95 (IS-95)
 - CDMA
 - Also known as cdmaOne
 - 64 users in a 1.25 MHz channel.
 - Can be used in 800 MHz and 1900 MHz bands.
 - Sprint and Verizon in the U.S.

	cdmaOne, IS-95, ANSI J-STD-008	GSM, DCS-1900, ANSI J-STD-007	NADC, IS-54/IS-136, ANSI J-STD-011, PDC
Uplink Frequencies	824-849 MHz (US Cellular) 1850-1910 MHz (US PCS)	890-915 MHz (Europe) 1850-1910 MHz (US PCS)	800 MHz, 1500 MHz (Japan) 1850-1910 MHz (US PCS)
Downlink Frequencies	869-894 MHz (US Cellular) 1930-1990 MHz (US PCS)	935-960 MHz (Europe) 1930-1990 MHz (US PCS)	869-894 MHz (US Cellular) 1930-1990 MHz (US PCS) 800 MHz, 1500 MHz (Japan)
Duplexing	FDD	FDD	FDD
Multiple Access Technology	CDMA	TDMA	TDMA
Modulation	BPSK with Quadrature Spreading	GMSK with $BT = 0.3$	π/4 DQPSK
Carrier Separation	1.25 MHz	200 kHz	30 kHz (IS-136) (25 kHz for PDC)
Channel Data Rate	1.2288 Mchips/sec	270.833 kbps	48.6 kbps (IS-136) (42 kbps for PDC)
Voice channels per carrier	64	8	3
Speech Coding	Code Excited Linear Prediction (CELP) @ 13 kbps, Enhanced Variable Rate Codec (EVRC) @ 8 kbps	Residual Pulse Excited Long Term Prediction (RPE-LTP) @ 13 kbps	Vector Sum Excited Linear Predictive Coder (VSELP) @ 7.95 kbps

 Table 2.1
 Key Specifications of Leading 2G Technologies (adapted from [Lib99])

Subscriber Base as a Function of Cellular Technology in Late 2001

Figure 2.2 Worldwide subscriber base as a function of cellular technology in late 2001.


III. Evolution to 2.5G

- 2G Data Transmission Capabilities
 - 2G transmits data over voice circuits
 - Just like a modem
 - Data is sent in place of voice over the same channel bandwidth, just like voice coding rates in the table above.
 - Capabilities around 10 kbps.
 - Applications possible
 - Limited Internet Browsing
 - Short messaging
 - Short messaging service (SMS) in GSM.
 - Can send a short message to another subscriber's phone.
 - Popular in Europe and Japan.

- New standards for data over 2G
 - Called 2.5G technology
 - Allows existing 2G equipment to be modified for higher data-rate transmissions.
 - More advanced applications are possible.
 - Web browsing
 - Wireless Application Protocol (WAP) that allows standard web pages to be viewed in a compressed format.
 - E-mail
 - Mobile commerce
 - Location-based services (maps, directions, etc.)

- Japan: First country to have a successful widespread mobile data service.
 - From NTT DoCoMo
 - I-mode
 - Proprietary data service
 - Games
 - Color graphics
 - Interactive web page browsing at 9.6 kbps.
 - Surprisingly popular: 25 million subscribers

- Upgrade Path
 - A 2.5G technology must match an upgrade path from the 2G technology that is in place.
 - Same air interface
 - Do not want to require wholesale RF equipment changes at the base stations.
 - Only require upgrades to software.
 - Plus addition of more equipment to work with base station equipment.

- TDMA upgrades
 - Three upgrade paths for GSM
 - Two are also upgrades for IS-136.
 - 1. High Speed Circuit Switched Data (HSCSD) for GSM
 - Allows subscriber to use consecutive time slots in TDMA.
 - Up to 57.6 kpbs
 - Four 14.4 kbps channels.
 - Ideal for "voice-like" services.
 - Since it still uses voice channel capabilities.
 - Streaming voice or low quality video
 - Interactive web sessions.
 - Only requires a software change at GSM base stations.

- 2. Generalized Packet Radio Service (GPRS) for GSM and IS-136
 - Good for data applications
 - E-mail, faxes, web browsing
 - Sets aside groups of TDMA channels as shared data channels.
 - Assumes users download much more than they upload.
 - Slower data rate upload than download

Shares individual radio channels and time slots.

- All data is sent as packets.
- Can support many more users, since user traffic is usually bursty.

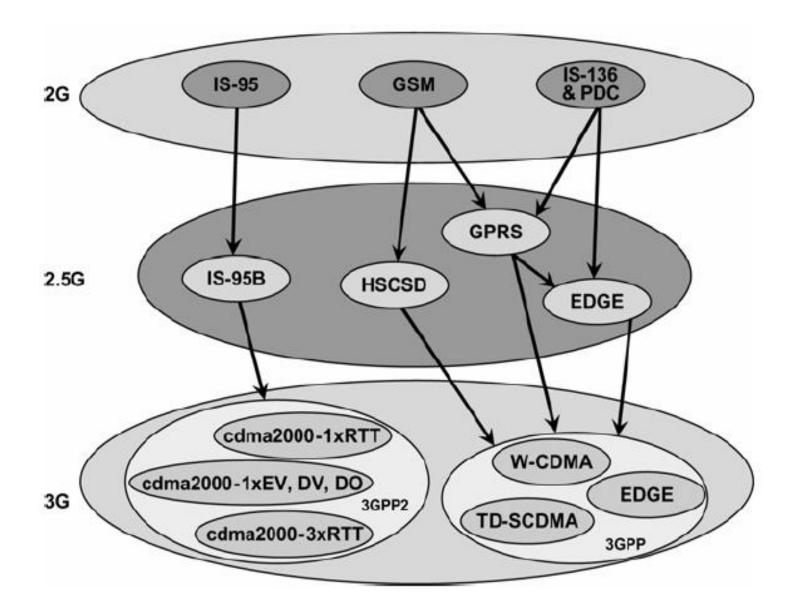
- Users transmit in short bursts and then are idle.

- Completely redefined air interface to handle packet data.
- GPRS units tune into GPRS radio channels and are "always on" to send data at any time.

- If all 8 time slots are taken by one user, can achieve 171.2 kbps.
 - 8 times 21.4 kbps (rate with error coding)
 - Applications must provide their own error correction bits.
 - Add additional bits (like CRC codes) to be able to detect errors.
 - As part of the carried data payload in GPRS.
 - Also cannot achieve 171.2 kbps when other users are also sending data, since users share the channel.

- Upgrade requirements
 - Need connections of base stations into a data network through routers and Internet gateways.
 - New software in base station.
 - No change to RF hardware.
 - Originally designed for GSM but upgraded to also support IS-136.

- 3. Enhanced Data Rates for GSM Evolution (EDGE) for GSM and IS-136
 - More advanced upgrade to GSM than GPRS.
 - Additional new hardware and software at base stations.
 - Supports a technology path to 3G.
 - Uses new modulation schemes (8-PSK) that is used in addition to GSM's standard (GMSK).
 - Adaptive modulation uses the best modulation for instantaneous conditions of the network.


- Much higher data rates from the new modulation schemes and the adaptation.
 - Practical raw data rates up to 384 kbps.
 For a single user taking a full 200 kHz GSM channel.
 - Can achieve several megabits per second by using multiple GSM channels.
- Although your textbook considers this a 2.5G service, some service providers call EDGE 3G.
 - Carriers who offer this service (for example, Cingular/AT&T) say it offers rates up to 135 kbps.

- Upgrade path from IS-95A to IS-95B for 2.5G CDMA
 - Only one upgrade path for IS-95
 - Users can use up to 8 CDMA codes simultaneously.
 - 14.4 kpbs * 8 = 115.2 kbps
 - Practical throughput is 64 kbps that can actually be achieved.
 - Also changes the method of handoff between base stations.
- What summarizes the difference between 2G and 2.5G?

V. Third Generation (3G) Wireless Networks

- Unparalleled new capabilities
 - Multi-megabit Internet access
 - Voice communication over Internet protocols
 - Voice-activated calls
 - "Always on" access
 - Receiving live music
 - Videoconferencing
 - Virtual home entertainment
 - Broadcasting
 - Games
 - Interactive video

- For which of these applications do you believe a great market exists and why?
- New spectrum allocations are being considered for 3G.
- Two major competing camps
 - Based on what 2G technology is used already by each camp.
 - From GSM/IS-136/PDC (by the 3G Partnership Project for <u>Wideband CDMA – 3GPP</u>) versus coming from IS-95/IS- 95B (by the 3G Partnership Project for <u>cdma2000 –</u> <u>3GPP2</u>).
 - Recall the following figure.

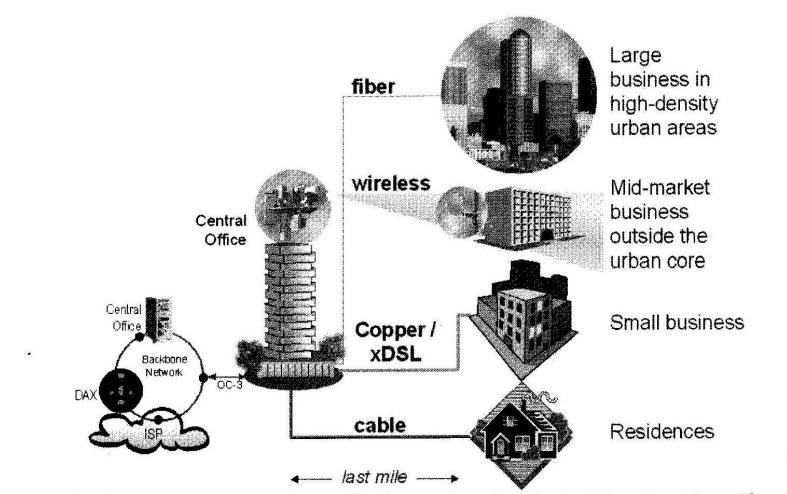
- 1. Wideband-CDMA (W-CDMA) or the Universal Mobile Telecommunications System (UMTS)
 - From GSM/IS-136/PDC.
 - Evolved since 1996.
 - From European Telecommunications Standards
 Institute (ETSI)
 - Backwards compatible with GSM, IS-136, PDC, HSCSD, GPRS, and EDGE
 - Equipment for the previous technologies will work in UMTS.
 - Network structure same as GSM.

- Up to 2.048 Mbps per user.
 - If user is stationary.
 - Up to 8 Mbps in the future.
- Needs a minimum spectrum allocation of 5 MHz
 - Instead of 200 kHz for GSM
 - Requires complete change of RF equipment at each base station.
 - 6 times more efficient use of spectrum than GSM
 - Uses CDMA

- 2. cdma2000
 - From IS-95/IS-95B
 - Works within original 2G CDMA channel bandwidth of 1.25 MHz.
 - Allows wireless carriers to introduce 3G in a gradual manner.
 - Can introduce 3G capabilities at each cell
 - Do not have to change out entire base stations
 - Do not have to use different spectrum.

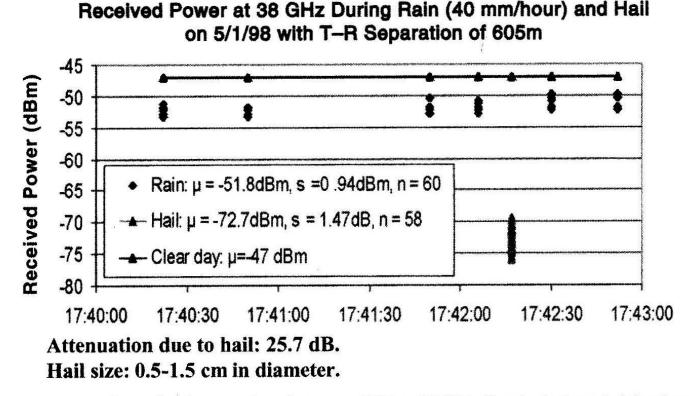
- First air interface: cdma2000 1xRTT
 - 1X = one times the original IS-95 (cdmaOne) channel bandwidth.
 - RTT = Radio Transmission Technology
 - Commonly just referred to as cdma2000 1X.
 - Instantaneous data rate of 307 kbps.
 - Typical rates up to 144 kbps
 - Depends on number of users.
 - Depends on velocity of the user.
 - Depends on the propagation conditions.
 - Uses rapidly adjusting rates.
 - No additional RF equipment is needed.
 - All changes made in software or with additional hardware.

- cdma2000 1xEV
 - EV = Evolutionary enhancement
 - High data rate packet standard overlaid on existing IS-95, IS-95B, and cdma2000 networks.
 - 1xEV-DO
 - Data only channel
 - Restricts a shared 1.25 MHz channel strictly to data users.
 - Supports greater than 2.4 Mbps throughput per user.
 - Actual data rates usually much lower.
 - Typical: Several hundred kbps.
 - Highly dependent on number of users, propagation conditions, and velocity of mobile.


- 1xEV-DV

- Data and voice channel
- 144 kbps with twice as many voice channels as IS-95B.
- Verizon advertises its EV-DO as having average speeds ranging from 300 kpbs to 1 Mbps.
 - Verizon and Sprint both offering this service and have the highest rates in the industry
 - Highly dependent on number of users, propagation conditions, and velocity of mobile.

- Ultimate 3G CDMA
 - Multicarrier 3x and beyond.
 - 3xRTT uses three adjacent 1.25 MHz channels.
 - Three channels can be operated simultaneously in parallel.
- What summarizes the differences in 2.5G and 3G?


VI. Wireless Local Loop (WLL)

- Rapid growth of demand for Internet connectivity
 - Can use wireless connections where there is inadequate telecommunications infrastructure.
 - Particularly in developing nations.
 - Inexpensive
 - Rapidly deployable
 - One broadband Internet connection could handle all needs for a home or office.
 - Voice, data, cable, Internet, etc.
 - Local loop
 - Old telephone term for a loop of copper to connect a telephone to a telephone central office.
 - Now used to mean a "last-mile" connection to a home or office.

Figure 2.4 Example of the emerging applications and markets for broadband services. (Courtesy of Harris Corporation, ©1999, all rights reserved.)

- Fixed wireless
 - Much more predictable wireless channel.
 - No mobility.
 - Time-invariant
 - Uses high frequencies
 - 28 GHz and higher
 - Allows very high gain directional antennas to be used.
 - Antennas can be of small physical size.
 - Tens or hundreds of megabits per second are possible without distortion.
 - Line-of-sight
 - Much like light.
 - Cannot have any obstructions in between Tx and Rx.
 - · Can be affected by weather

Figure 2.8 Measured received power levels over a 605 m 38 GHz fixed wireless link in clear sky, rain, and hail [from [Xu00], ©IEEE].

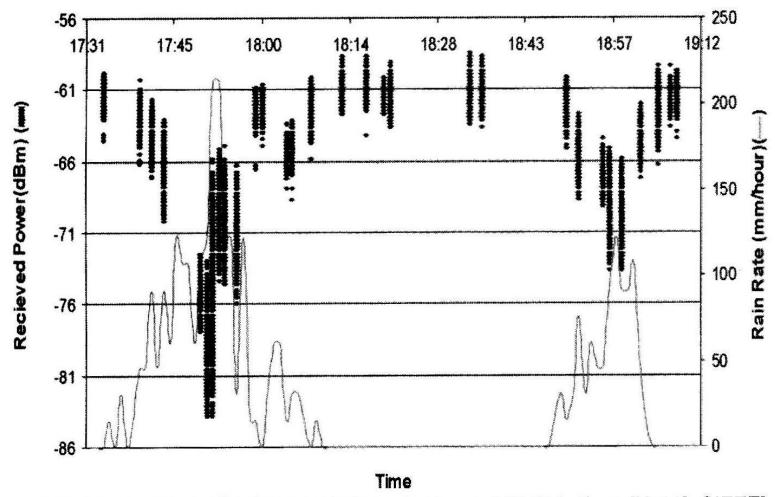


Figure 2.9 Measured received power during rain storm at 38 GHz [from [Xu00], ©IEEE].

- The IEEE 802.16 Standard has recently been developed for WLL
 - Which they call Broadband Wireless Access
 - Also called WirelessMAN for a Wireless
 Metropolitan Area Network.
 - WiMax 802.16e Mobility for Data
 - can create city-wide networks, incomparison with WLAN's with ranges of only 100 meters.
 - See

http://grouper.ieee.org/groups/802/16/index.ht ml

VII. Wireless Local Area Networks (WLANs)

- Local Area Networks on the order of 100 meters or less in diameter.
- Use unlicensed spectrum
 - So owner does not need a license to set up a WLAN.
 - Unlicensed use has been encouraged through lots of spectrum allocation at several frequency levels .
 - ISM band- 902-928 MHz, 2.4-2.4835 GHz, 5.725-5.825
 GHz

- IEEE 802.11
 - Predominant standard in the U.S.
 - Uses CDMA
 - 802.11 2 Mbps in 2.4 GHz band
 - 802.11b 11 Mbps, 5.5 Mbps, in addition to 2 Mbps in 2.4
 GHz band
 - Named Wi-Fi by the Wireless Ethernet Compatibility Alliance (www.wi-fi.com)
 - Goal is to promote interoperability between vendors (interoperability between one vendor's wireless card and a different vendor's wireless access point).

- 802.11a 54 Mbps in 5 GHz band with much shorter range (only about 1/3 the range of 802.11b).
 - Use OFDM
- 802.11g 54 Mbps at 2.4 GHz
 - Called "Further Higher Data Rate Extension in the 2.4 GHz Band".
 - Uses OFDM (Orthogonal Frequency Division Multiplexing) to achieve much higher rates.
 - Equipment is less expensive to produce for 2.4 GHz.
 - Much WLAN equipment is now being sold for 802.11g.

- 802.11n Just started considering proposals for much higher data rates.
 - 802.11b and 802.11g only actually achieve ½ of their raw data rates.
 - Goals are in excess of 100 Mbps.
 - Uses Multiple Input-Multiple Output (MIMO) technology (more than one TX antenna, more than one RX antenna)
 - MIMO Makes use of the concept of diversity (studied later in the semester) to overcome propagation impairments.

- And 802.11i is addressing an important nonradio issue - security.
- Also 802.11e (quality of service), 802.11f(roaming) and 802.11x (security keys)!
- HIPERLAN
 - High Performance Radio Local Area Network
 - European standard
 - Current standard: Up to 20 Mbps
 - HIPERLAN/2: Up to 54 Mbps

- Standards might eventually converge to one WLAN standard, or 802.11 may just win.
- WLAN performance depends heavily on how well the WLAN is installed.
 - Needs good placement of equipment.
 - Author discusses tools for easy and effective installation based on a building floor plan.

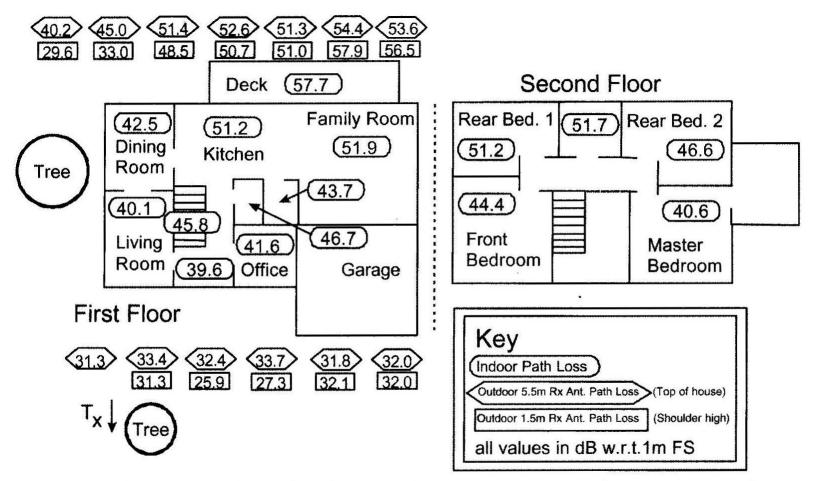


Figure 2.16 Measured values of path loss using a street-mounted lamp-post transmitter at 5.8 GHz, for various types of customer premise antenna [from [Dur98], ©IEEE].

VIII. Bluetooth and Personal Area Networks (PANs)

- Removing the Wire
 - Ability to replace cumbersome cords
 - Printer cables
 - Headphone cables
 - Mouse cables
 - Ability to move equipment throughout an office.
- Bluetooth
 - Open standard
 - Embraced by over 1,000 manufacturers.
 - Uses an Ad-hoc network approach
 - Important concept in wireless communication.
 - Seen in WLANs, military applications, etc.

- In "ad hoc networks" devices talk to whatever other devices they can talk to.
 - "Ad hoc" Formed for or concerned with one specific purpose (usually also considered temporary).
 - Networks of devices that are all peers and talk to whoever is near enough.
 - As devices move, they change their connections with other devices.
 - Why would Bluetooth want to use an ad-hoc approach?

- May have to send data through a sequence of neighbors to reach and end destination.
 - No "base station" concept.
 - Ad hoc networking is a very popular research topic ad hoc routing, quality of service, sensor networks, power management, etc.
- Bluetooth is named after King Harold Bluetooth, the 10th century Viking who united Denmark and Norway.
 - Goal is to unify the connectivity chores of appliances.

- Within 10 meter range.
- Uses 2.4 GHz ISM unlicensed band
- Uses frequency hopping spread spectrum (1600hops/sec).
- Symbol rate 1Mbps using GFSK modulation
- Wearable computers
 - New opportunities for computers that are worn.
 - PDAs, cell phones, smart cards, position location devices all could be wireless.
 - In a Personal Area Network (PAN)

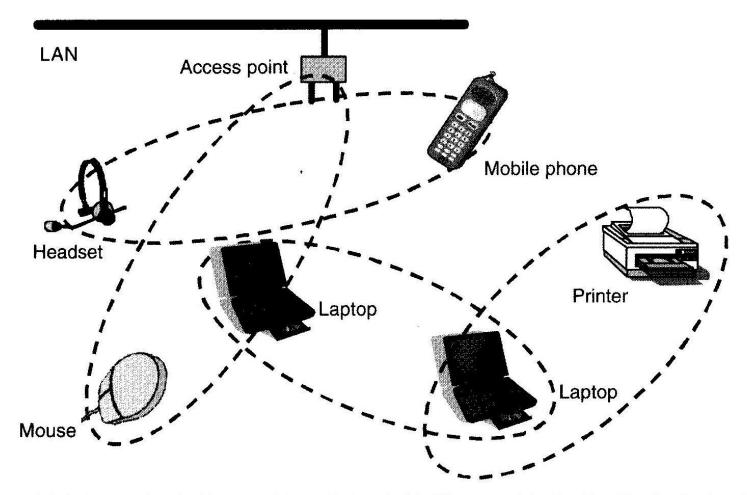


Figure 2.17 Example of a Personal Area Network (PAN) as provided by the Bluetooth standard.

CDMA FORWARD AND REVERSE CHANNELS

Forward Channels

- The Forward CDMA channel is the cell-to-mobile direction of communication or the downlink path.
- It consists of: Pilot Channel is a reference channel which the mobile station uses for acquisition, timing and as a phase reference for coherent demodulation.
- It is transmitted at all times by each base station on each active CDMA frequency. Each mobile station tracks this signal continuously.
- Sync Channel carries a single, repeating message that conveys the timing and system configuration information to the mobile station in the CDMA system.
- Paging Channels' primary purpose is to send out pages, that is, notifications of incoming calls, to the mobile stations.
- The base station uses them to transmit system overhead information and mobile station- specific messages.
- Forward Traffic Channels are code channels used to assign call (usually voice) and signaling traffic to individual users.

Reverse Channels

- The Reverse CDMA channel is the mobile-to-cell direction of communication or the uplink path.
- Access Channels are used by mobile stations to initiate communication with the base station or to respond to Paging Channel messages.
- The Access Channel is used for short signaling message exchanges such as call originations, responses to pages, and registrations.
- Reverse Traffic Channels are used by individual users during their actual calls to transmit traffic from a single mobile station to one or more base stations.